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ABSTRACT

We consider methods for the approximate solution of a Fredholm integral

equation of the first kind, namely

u(t) = f K(t,s) z(s)ds, t I'T

S

where K(t,s) is a given kernel, u(t) is given foi t = tl, t,... ,t, and z

to be approximated, is an element of a reproducing kernel Hilbert space A

We assume that the linear functionals At, t E T defined by

Atz = Kt,s) z(s)ds
S

are all continuous on iR and we treat the problem of approximating N z = z(s)

for s E S as a problem in approximating the continuous linear functional N s

by the continuous linear functionals

{t,%t t = tl~t? ... Itn d,

With this point of view we do the following:

i) give formulae for approximate solutions, under various conditions

ii) give pointwise error bounds for these solutions

iii) give several examples of practical repro(,ucing kernel Hilbert spaces

iv) show that the method of regularization of Tihonov and Glasko and the

method of statistical estimation of Westwater and Strand are (equivalent)

special cases of the theory presented here

v) show how to chDose the regularization parameter when errors due

either to quadratures or experimental measurement is non-negligible,
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ON THE APPROXIMATE SOLUTION OF FREDHOLM INTEGRAL EQUATIONS OF

THE FIRST KIND

by

Grace Wahba

1. Introduction

1.1 Statement and Some History of the Problem

We are interested in the numerical solution of a Fred-

holm integral equation of the first kind, namely

u(t) = f K(t,s) z(s)ds teT (1.1)
S

where S, T are intervals, K(t,s) is a given kernel on

T x S with appropriate properties and u(t) is given for

t = tlot 2 ,...,tn, t.iT.

It has been noted by a number of authors (see for ex-

ample [7], [11], (14]) that replacing the integral in (1.1)

by a quadrature approximation and inverting the resulting

matrix does not always give satisfactory results. No matter how

large n is, there are many functions z, including highly

oscillatory ones, such that

u(ti) = I K(ti,s)z(s)ds, i = 1,2,...,n (1.2).
S

A discrete approximation of one of these functions is

obtained by the matrix inversion

Sponsored by the Mathematics Research Center, United States Army, Madison,
Wisconsin, under Contract No.: DA-31-124-ARO-D-462 and by the Air Force
Office of Scientific Research Office of Aerospace Research, United States Air
Force under AFOSR Grant No. AF-AFOSR*-69-1803.
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technique. Which one is actually obtained, apparently ule-

pends more on the quadrature procedure than anything else.

Two methods in the literature seem to have resulted in satis-

factory numerical examples. The first method, called the

method of regularization of Tihonov [121 113] and studied

experimentally by Tihonov and Glasko 1141, goes as follows:

Let

2 201(z,u) - f (u(t)-u(t)) dt4-a I (L z(s)) 2 ds (l.3a)
T S

where u is a given function in L 2 (T), u, depending on z, is

given by

ult) f I K(t,s)z(s)ds, (l.3b)
S

a > 0, and Lm is an mth order linear differential operator

with continuous positive coefficients. Assume K(t,s) is

continuous, and that

0 f F K(t,s)z(s)ds, teT (1.4)
S

implies that z(s) -' 0, scS.

Then, it is shown in [13], that, for every fixed

ucL 2 [T], and every a > 0, there exists a unique 2m times

differentiable function z - z which minimizes MO(z,u).

#990



Tihonov and Glasko (14) provide an argument that Lm defined
by

L z = z' (1.5)
m

fits into the general theory if K > 0 on T x S. They then

experiment with a numerical algorithm based on finding z to

kminimize Mm(z,u) as follows. Quadrature points {s.1 ,

Sand {It }n , t.ET are chosen. Let to be the lefti I~ J=l 0
boundary of T, define

Z (z 1 ,z 2 . ,z,,)
I,

u= (u(t 1 ),u(t 2 )5 ... ,u(tn))

and z =0. u is a qiven vector. Define u as

n k 2
S-(z'u) = j di • K(tj's )a z -u(t2))

j=1 i~i i ii )U~

-2k-l (zi+l-zi) (+ a 2 .)
i=0 (Si+1 -Si)

dln k.>0 nwhere j d > 0, and are appropriately chosen

-u(zu) is to be thought of as a
quadrature coefficients. io

discretized version of Ma(z,u) of (I. 3a) with L given by

#990 -3-
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;1.5). Let the n × k matrix K, the n x n (diagonal) matrix

D and the k x k symmetric matrix Q be defined by setting

M(z,u) - (Kz-u) 'D(Kz-u) + azz'Qz (1.7)

and matching the coefficients of z, ; and az in (1.6) and

(1.7). For a given u, the vector z which minimizes

MR(z,u) is well known to be given by

S- (K'DK+aQ)-lK'D (1.8)

It can be verified by direct manipulations upon the matrices

involved that another formula for z is

Q-1 Q-I,((Q -lK,+aD -1 (1.9)

Tihonov and Glasko compute z from (1.8) as a discrete approxi-

mation to the function z (s) which minimizes M1(z,u). They

do this experimentally, for several va'-ies of a, by beginning

with a u obtained from a known function u(t) satisfying

u(t) = K(t,s) z (s)ds
S

where z is a given (smooth) experimental function. For

certain values of a, the results are "good", i.e. the com-

ponents zi of z satisfy

-4- #990
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More recently, Ribiere (8] has also studied the method

of regularization. In (7], (8] and j14J tte experimental

results suggest that there is an optimum choice of a. How-

ever, a theory making precise the optimal choice is apparent-

ly not available.

The second method, discussed by Strand and Westwater

[11] and called "statistical estimation" of the solution,

is as follows: Let the n x k matrix K be defined as before.

Let Z = (Zl,Z2,...,Zk) ' and . = (,'l"2'"''''n)I be

normally distributed zero mean random vectors with %prior)

covariance

EZZ'

Ec(.' O D_

EZ( f= 0

Let U = (U1 ,U 2 .... ,Un) be a normally distributed random

vector defined by

1 = KZ + c (1.10)

It is well known that

#990 -



E(ZIU-u)- -R, - )-l-u (1.11)

Strand and Westwater replace the equation (1.1) with

the model (1.10), where the unknown vector z is replaced by

the random vector Z with prior distribution N(O,Q-), and

Sis to be thought of as a "noise" vector independent of z

and having the distribution N(O,aD-). The estimate for the

"random" vector Z given the "data" u is taken as the right

hand side of (1.9). Hence the method of regularization and

that of statistical estimation are in practice the same for

appropriate choice of D and Q. Strand and Westwater per-

formed numerical experiments (again beginning with a smooth

known solution z ) analogous to those of Tihonov and Glasko,

and again obtained "good" results.

1. 2 Purpose of This Nota and Basic Assumptions

Both of these methods can be embedded in the general

theory of the approximation of continuous linear functionals

in a reproducing kernel Hilbert space. The overall purpose

of this note is to demonstrate this statement in some con-

siderable practical detail. As a byproduct of this theory

we obtain a rationale for choosing a, to minimize a certain

error bound. We also obtain pointwise error bounds on the

solution involving a Hilbert space norm of the (unknown)

solution z. These results provide a criteria for the selection

-6- #990



of a good Hilbert space in which to operate. Several

practica.,. •amples are given.

We assume the function z to be an element of a repro-

ducing kernel H!ilbert space 4 of real-valued functions de-

fined on S. This means that the linear functionals NSF

sCS, defined by

N z = z(s) , z C M (1.12)S

are continuous for every seS. This is just what is needed to

establish point wise error bounds. In this case, for VseS

there exists an element 6 3cS for which

<6 ,z> = z(s) , Vzc A (1.13)

If we define the kernel R(s,s') on S x S as

<6s,6s,> = R~s,s') (1.14)

then R(s, s) is positive definite. Let R. be that function
0

defined on S whose value at s is given by

R s (s) = R(s ,s) (1.15)

By the Moore-Aronszajn Theorem (see [21), to every positive

definite kernel R(s,s') defined on S x S there corresponds

a unique( Hilbert space R = 4 with the following properties:R

#I990 - 7



1) R • VSoES
0

2) <z,R o> - z(so) , ZC4 , S0 ES
0

Hence 6 of (1.13) is given by

6 -Re (1.16)

and

<R s,Rs,> - R(s,s') (1.17)

Equation (1.17) is the source of the terminology "reproducing

kernel". The elements {R ,sES} clearly span 4.

We make sufficient assumptions on K tc ensure that the

linear functionals At defined on A R by

A tz f K(t,s)z(s)ds , zt AR (1.18)
S

are continuous for every fixedt cT. The problem of estimat-

ing z(s) for a particular seS given that zc AR and the in-

formation of (1.1), namely, Atiz - u(ti), i M 1,2,...,n may

then be viewed as that of approximating the continuous linear

functional N. defined by (1.12) by the continuous linear

nfunctionals {Ati ) defined by (1.18).
9 i=l

-8- #990



To discuss the problem practically, we must know when At

defined by (1.18) is continuous, and how to find its representer

n The answer is given by Theorem (1.1) and its corollary

which will conclude Section 1.

Once the representers {iq n are known, there arei-1

several points of vi.ew that one may adopt when approximating

one continuous linear functional by several others. Perhaps

the simplest is as follows. Let A n be the subspace spanned

by ({•t 1n and P the projection operator onto this sub-

space. Suppose An is n dimensional. Approximate Rs by

PR. Then ifn s

<7ti,z> = u(ti) , i =

we have

<PnRs z> = <R sP nZ> = (P nz) (s)

n n n

1= (s~t() ,..ri (s) tl tl'tn i l

P z is, of course, that element in A of minimum norm which

satisfies (1.2). One then has the point wise error bound

#990



Iz(s)-(PnZ) (s) I <z-P z,Rs> - <z-P zR -P R >1

nn 5 n s na

ItZ-PnZItIIRs-Pn1stI R • IzIIIRsPnRs II (l.19a)

where lIIs-PnRsll can be computed for any fixed s. Hence in

solving any particular practical problem, one should expect

good results if one can choose a reproducing kernel Hilbert

space in which the norm of the unknown function z is small.

We actually generalize this point of view in two ways. First,

if AI is a Hilbert subspace of A of codimension m < n, then
it is possible to approximate R8 by {nt }n in such a way

5 b I1 insuchawa

that R and its approximant differ by an element in A Ina e
this case, it is shown (in Lemma 2.5) that the right hand

side of (1.19a) may be replaced by

IIPlZ1 I I IIP( %)II (l.19b)

where P1 is the projection operator onto AV and Rs is the

approximating element. Here we will be able to calculate

11PI(R%-Rs)II, and one chooses an A and an a, such that it

is believed that the norm in A of P1 z is small. This is the

geometry of the approximation of continuous linear functionals

used by Golomb and Weinberger (4]. For other somewhat re-

lated work on the approximation of one continuous linear

functional by several others see 131 and [9].

-10- #990 i
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Futher generalizing, we actually consider in some detail

the cases where u(ti) are known only up to some error

(experimental error) or the values (s) of the representers

nt are known only imperfectly (quadrature error). In this

case the error bounds analogous to (1. 19a) involve the magnitude

of the (experimental or quadrature) error. We show how an

approximate minimization of these error bounds leads in a

natural way to a family of algorithms, which contains the

method(s) of regularization and statistical estimation.

Section 2 provides statements of all the Hilbert space

lemmas that are used in the sequel. They are generally well known.

Since they may be proved by elementary methods, no proofs are

provided. Section 3 provides examples of some reproducing

kernel Hilbert spaces. Concrete examples are fairly hard to

come by. Section 4 presents the main theorems concerning

approximations to the solution z and their properties. For

concreteness sake, but without loss of generality, the

theorems are stated with respect to a particular reproducing

kernel Hilbert space which is related to the method of re-

gularization as discussed in (12], (131, [14]. Section 5

discusses the introduction of quadrature error and appropriate

ways of dealing with it, and a rationale for choosinq a is

given. In Section 6, the precise relationship between

#990 -11-



statistical estimation, and the approximation of continuous

linear functionals is described, and it is shown how in

general one obtains the sae numerical result from the two

approaches.

We conclude this Section with Theorem 1.1 and its

corollary.

1. 3 A Preliminary Theorem

Theorem 1.1. Let A be a continuous linear functional

on AR, and let *C J4R be defined by

Then *(s), scS, is given by the formula:

;p(s) - ARs (1.20)

Conversely, let A be a linear functional defined on AR and

suppose that the function 4 defined in S by

*(s) - ARs (1.21)

satisfies ;e .W Then A is continuous.

Proof. Since *(s)c AR' *(s) = <,Rs> - AR . Conversely,

if *# A R, then the continuous linear functional A defined by

#990



Az =<,z> (1.22)

coincides with A on the span of {Rs,scS), since AR,

But the span of {R ,SS} is g

Corollary. Let K be such that

If K(t,s)R(s,s)K(t,s')dsds' 0 (t) (1.23)
S S

is well defined and finite as a Riemann integral for each

fixed tcT. Then the linear functional A defined byt

Atz = I K(t,u)z(u)du , zE AR (1.24)
S

is continuous on A andR

tZ= crtZ , tcT , z• •R

where nt C AR is defined by 4
n AtR = I K(t,u)R (u)du , (1.25)

S

and IIAtIl 2 = 62 (t).

Proof. The hypotheses on K imply that there exists

(for each fixed t), a triangular array

p

#/990 -13-
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'1k'S2k' Skk

such that the Riemann iums

k-i Z-1
ill J11 K(tlhik)R(sik'sjt)K(t'sjt) ('i4l,k- ik) (Sj+l,C-J

converge to 02 (t), as k, I + =, maxlsi+l,k-SikI 0 But then,

using (1.17), it follows that the sequence q(k) k - 1,2,...

defined by

n(k) . k-i
i X(tl' ik) (s Sik)R k 3 1,2,...

is a Cauchy sequence in 9*, lln(k) 112 -. 0 2 (t), and t(k)

converges pointwise (in s) to n given by (1.25), which is

therefore in AR"

2. Hilbert Space Lemmas

In the lemmas of this section we have the following:

m C n, A is a Hilbert space,

0 1

-1- #990



where A0 is an m-dimensional subspace, k A and P

and P1 are the projection operators onto h0 and A re-

spectively. {ri 1 are, in each lemma, n elements in Ajii

satisfying the following two conditions

(i) {P ni ni span 34

(ii) {Plnini are linearly independent.

Let

let M }= be a (fixed) orthonormal basis for AO' and let
V =l

X and I be the m x n and n x n matrices with entries de-

fined by

(X]i = <0 ,n.> , Ii = l,2...m
u2. U 2= (2.1)

[ 1]ij = <ýi'&j> i, j = 1, 2... n

Conditions (i) and (ii) guarantee that X and I are of full

rank. We let ý, E and n be vectors of m, n and n elements

of A respectively, given by

l,2 n

#990 = 1 2 '"'2, -15-
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and u be a given vector of real numbers,

u - (ulU 2 ,...Un).

Lemma 2.1. The solution to the problem: Find zE A

to minimize <P 1 Z,P 1 z> subject to <z,ni> - i -

is unique, and is given by z,

Z- M (X-'x')-xX-''+C '- 1-XI(X, xf-)-XF-)• (2.2)

Lemma 2.2. Let 60 cA be given. The solution to the

problem: Find yE A of the form

n
y I c CI (2.3)

where c - cc1 DC2 ,...cnJ is a vector of real numbers, to

minimize

!!P 1 (5o-y)II12  (2.4)

subject to

0 ._-)112 0 (2.5)

is unique and is given by 6

-16- #990



o (xl-lx') - 1 Xl 1-nr ÷(j-1-j-lx' (Xj'x')-1 x- 1 n'

(2.6)

where • and ý are the vectors of real numbers (depending

on 60), given by

0 ( < 6 o0i >2,< 6>,.2> , . .. < 6 o , m > )

(2.7)

= (<6o, 1 >,<60,&2>, ... ... <6,0 n >).

*
Let the bounded linear operators A and A be defined

by (2.2) and (2.6) respectively as

Az = z , if ui <z,1li>, i = 1,2,...n,zE A

* A

A 60 0 0 E

Inspection of (2.2) and (2.6) reveals that A and A are each

idempotent, and are adjoint to each other, that is:

Lemma 2.3 If z is of the form of the right hand side

of (2.2) for some u, then z = z.

Lemma 2.4

<z,60> = <Z,6 0 > <Z,6o>, Z'6oE 0 (2.8)

#990 -17-
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Lemma 2.5

2 2
- ,z o_ -II Ii(6o-•o) 112

I I IP I I 2!Ie(6 0-• 0) 2 (2.9)

Furthermore, a calculation gives

Lemma 2.6

11P 1 (60-60) 2  <6Po> 0 -

(2.10)

where * and • are given by (2.7).

Lemma 2.7 Let V ( {v. } be a non-negative definite
1)

Sx n matrix with ij th entry of V-1 given by vij. Then the

solution to the problem: Find zc to minimize

M(z) i, (<z'Ii>-ui)v3(<Z',nJ>-UJ) + <PlZ'PlZ>

(2.11)

is unique, and is given by z,

z = ¢(S-1X') IxsIu' + t(S-1-S-1X' (XS"Ix')-.Ixs-I)'

z = (Xs X) 1XS 1  +

(2.12)

-18- #990



where

S + V. (2.13)

Lemma 2.8 Let n= be n elements in A satisfying

> v.;, arnd let 60 0E be given. The solution to the

problem: Find ye g of the form

n
y = di (n-i+C) (2.14)

i=1

where d (dlod 2 1 ... d) is a vector of real numbers to be

found, to minimize

n n

l6l - dinill 2 + 11 dii 2 (2.15)
i= . (= 1

subject to

n

lip -( dinif 2 = 0 (2.16)

is unique, and is given by 6o'

o= (XS-x)-xs-I(n+c)' + t(S-- 1

(2.17)

where , depending on 6 are given by (2.7), S is given
0

by (2.13), and the vector of functions (n+c) is given by

P990-



r)+ . (l + tln 2 +E 2 ,.. .nn+cn) (2.18)

Lemma 2.9 Let z satisfy <Zti+ci> ui i =1,2....n,

then if z is given by (2.12) and &o by (2.17), then

<z,6>= <zSo> (2.19)

Lemma 2.10 For = (dld2 ... d n) any vector of real

numbers, and z and z as in Lemma 2.9, 6 as in (2.17)

n ~n

<z-i,6 0>2 <,z,6o0- o0>2 < 2[!1z112(1160- dinill2+11 ;li Ci!2

(2 ý20) J

If C A I = 1,2,...n, then 6o-6 c Alt and

_ ~n n 2 :

<z-- >2 < 2[111• z11 2 (1160- din.1i 2+11 -d i•j i1 2

(2.21) -

3. Examples of Reproducing Kernel Hilbert Spaces 4

3.1 Generalities

Let S, Q each be the real line or a closed subset,

let G(su) be defined on S x 2 with the property that

G(s,u) c L2 (0) for evexy fixed s, and suppose further that

- 0- #990



0 = G(s,u)p(u)du, pcL2 (Q), scS (3.1)
2F

implies that p - 0. Then the range of the operator G

defined by

(Gp) (s) = f G(s,u)p(u)du (3.2)

is a reproducing kernel Hilbert space of functions defined

on S. If we call this space '1 , then it has reproducing

kernel IR given by

Rl(s,s') = f G(s,u)G(s'u)du (3.3)1n

with inner product

<fl~f2> fI i 10(u)P2 (u)du (3.4)

where

fi(s) = (Gpi) (s) I G(s,u)Pi(u)du, i = 1,2 (3.5)

Suppose 1 is contained in some larger Hilbert space !
m

of functions defined on S, and {O are m orthonormal

functions on S all in Ai Then 9 , the m dimensional1 0

space spanned by { M= J, is a reproducing kernel space with

#990

VN-



A

reproducing kernel R0 given by

R0 (ss') = 1 (8)0 (s') (3.6)

and 4 = . i.5 a -eproducing kernel space with re-

producing kernel R given by

R(s,s') = R (s,s') + R (s,s') (3.7)
0

3.2 Reproducinq Kernel Spaces Associated with Green's

Functions

thLet Lm be an m order linear differential operator

on (0,11 with m-limensional null space. Let the linear.

functionals M be defined by

M f = I Yf( (0), u = 1,2,...m (3.8)
v1

where the matrix (y is kt.-n-singular. Let G(s,u) be the

Green's function for the equation L m = g, M f 0, =1,...m,}ii

and let { I1 span the null space of Lm with

Mu =6 (3.9)

where 6 is the Kronecker 6. We may take A as the
UiV1

collection{f: LmfcL 2 [0,1], M f = 0, 1 = 1,2...m,) and 0

-22- #990



m
the space spanned by {O 0 then has inner

product

m1
<fl~f 2 > = (MVfi) (Mv f 2) + (L 1  (Lmf2) ds (3.10a)

and

I 2 1 ( 2 ds . (3.10b)
0

Two simple examples are:

a) L dm" ~dsm

GJ (SU) (S-U)+-

"b) d n(3.11)

fV (S) TV-f F v 1,2...ms--

Y -- 1, p = v, = 0 otherwise

m sb) Lm V N (D+av), {aUV)=l distinct positive real

numbers
m CE V (s-u) -1

G(s,u) c ce , > •U, cv = I(a j-a V)

o (s) = c e

M Vf = F (D+a 1)

#990 -



J

where (D+a )f - f' + a f. This type of reproducing kernel

space may be used to construct spline functions. (See (31)

3.3 Spaces of Functions with Rapidly Decreasing Fourier

Transform

Let W(X) be a ceiNmplex-valued Hermitian function of

A on 1-•,•) with W(X)CL 2 (-ac) and JW(X)l > 0, all real A

Let G(r) be the inverse Fourier-Plancherel Transform of

W( ) which we write as

OP

GIr) e-i W(A)dX . (3.13)

Let

R(s,s') - I G(s-u)G(s'-u)du- $ e-i(s-t)X•wA)W*(X)dX

(3.14)

R(s,s') is positive definite, and, since IW(X)i > 0,

0 " - G(s-u)p(U)du, -• < s < 0, peL 2  (3.15)

implies p(u) - 0. A , the reproducing kernel space for

R(s,s') is the collection of all functions f of the form

f(s) f $ G(s-u)p(u)du peL2 (-c0,M) (3.16)

with inner product (by Parseval's theorem), given by

-Z4- #990



< lF2 1 M F ( ) 2( )
= 2 > dX (3.17)

-- WPM)W (M)

where Fi is the Fourier-Plancherel Transform of f

contains only functions whose Fourier transforms F(X) de-

crease sufficiently rapidly that F(X)/W(X)EL 2 (-•,=).

For a concrete example, let q, p be non-negative in-
tegers with q < p, .et {a1 }•l' {eV}l be p + q distinct)q.

positive real numbers, let

p
PP~ M 11 (i-a

q
Q(M) = i (iH-s,) (3.18)

v=l

WiMl = Q(l)/P(X).

We have

G(t) = c e- hT, T > 0
(3.19)

--o

where
q

=t ($k-ca)/ (cj-a )k=l J•{

#990 -k5-)i
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U

and

Rls,s') 1 " aI-'

v-11

(3,20)
evm "•1 'l+v

(for q - 0, p -1 we have R(s,s') - e-a s-s ).

Letting m - p-q, A is here the collection of all

functions with absolutely continuous m-lst derivative and

square integrable mth derivative. Let

GQI dq e , T > 0

(3.21)

" 0

where
d J , (Bj-8)

jOv

Let

(GQf)t I G(t-s)f(s)ds (3.22)
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and let

Lpf RI (D+c' )f (3e23)

For fE • , (Gf) has p-i absolutely continuous and p

square integrable derivatives, and the inne;- product in A

is given by

CO

<fl-f2> (LpGQfl)t(LpGQf 2 )tdt. (3.24)

3.4 Spaces of Band Limited Functions

Let aA be the subset of L2 (--,-) of functions whose

Fourier transforms vanish outside [-A,A].

Let

GIT) = f s(T-u)w(u)du (3.25)

where

S(T) = sin AT
WT

(3.26)

A W(\)d
-A

and W(A) is assumed to be a Hermitian function of X with no

real zeroes in [-A,A]. The equation

0 = f G(t-u)p(u)du -0 < t < 0 (3.27)
-0
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has solutions in L2 (-,) but not in 3 A, since (3.25)-(3.27)

imply W(x)P(X) - 0, -A < A < A, where P(X) is the Fourier-

Plancherel transform of p(u). (Note that S()), the Fourier-

Plancherel transform of sin AT/WT is S(A) - 1, JAI _ A, - 0

otherwise.)

1A is a reproducing kernel Hilbert space with inner

product

A F1 (XF 2 {M)
2 f dX (3.28)

-A W(X)W (A)

where Fi is the Fourier-Plancherel transform of fi' 1 1,2.

The reproducing kernel is

A
R(s,s') - f e W(X)W ()dA . (3.29)

-A

If we set

WM)2 = 1, JAI A

(3.30)

0 otherwise

then

R(ss') sin A (s-s' (3. 31)

and 3. is a Hilbert subspace of L2 (-ac). Slepian and

Pollack (101 consider the space of bandlimited functions with

reproducing kernel (3.31). A restatement of the sampling
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theorem tells us that the functions -qj defined by

1 A i (s-2nj/M)
7(s) = A- ( e W(X)d), j - ...- 1,Ol,...

(3.32)

are a complete orthonormal basis for

4. Typical Theorems

A variety of theorems now fall out by applying Theorem

1.1 and the lemmas of Section 2 to the reproducing kernel

Hilbert spaces of Section 3. For concretenesn only we

state them with reference to the example of Section 3.2,

since this example provides a direct comparison with the

method of regularization as discussed by Tihonov and Glasko.
th ~Thus, let Lm be an m order linear differential operator

on [0,1] with m-dimensional null space spanned by $ 1 >mon • V=I '

and A~ = {z: LM zL 2 ,ll, z (m-l) absolutely continuous). Let

G(s,u) be the Green's function for the equation

Lmf = g, f(V)(Q) = 0, ' = 0,1,2,...m-1

11 The reader may verify that the choice of the matrix

{V ) in (3.8) is irrelevant to the solution of our problems,

we take it as I.
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and

R (s,s') f f G(s,u)G(o',u)du (4.1)
0

m1
R(S,S') - ý (a(S)$ (s') + f G(s,u)G(s',u)du

v-i 0

(4.2)

We suppose that K(t,s) satisfies that

1 1

I f K(ti 1 s)R(ss')K(tils')dsds' i - 1,2,...n
0 0

is well defined and finite as a Riemann integral.

Let ni (ni€c A) be defined by

1
Ii(s) f K(t.,u)R(s,u)du (4.3)
0

Define the elements C A , and the matrices X and I by 1

Pit ' ci, = f K(ti,u)Rl(s,u)du, i - 1,2,...n,

(4.4)
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Lii7X ={Xi, =1,.ri 12,.n

Si i,j 1,2,...n

1
Xti = n , I Kltifu)o i(u) lu (4.5)

-o L

11
J>= <i' J>"K(tis)R (S,s')K(tjs')dsds'

00

(4.6)

Theorem 4.1 Let u = (ulU 2 ,...un) be a vector of n

real numbers, let V = (vi } be an n x n symmetric positive
1)

definite matrix with V- {v2 }, and suppose that matrices

X and [ defined by (4.5) and (4.6) be of full rank. For
A

zc , define the numbers u. by
1

U ui(z) =<i,z> = f K(ti,s)z(s)ds (4.7)
0

i = 1,2,...n

Then

(i) There is a unique solution z to the problem:

Find zc to minimize

n .. 1
M(z) - ((U.-Ui)v -(uj-u j + a f (LmZ)2ds (4.8)

i,9 0-
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given by

2CL ow (xr '~ xr-lii- + (r-'-V'x,(xr-lx') lxr )u

(4.9)

where * and • are the vectors of functions

S- (•,2..m

and

r S + V (4.10)

--A A

Iii) lrn za Z0, given by

(4.11)

is the (unique) solution to the problem: Find zecM to

minimize

1
)(L Z) a ds

•00
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subject to ui(z) = ui, i = 1,2,...n. -

(iii) For any ze A satisfying

ui - K(ti 1 s)z(s)ds i = 1,2l...n (4.12)
0

and z0 given by (4.11) we have the pointwise error bounds p

2 2 1 2
Jzo (S)-Z(S 2I < a2 (s{(Lmz)2 ds} (4.13)

0

where

a(s) R(ss) -ix' (4.14a)

+

and :

*(s) = ( s) ,21s),. .mls),

c(s) = ((S),E 2 (s),... n(S)) 4. 4.14b)

(iv) If ze b has the form

m n
z(s) = c c (s) + I di.ils) (4.15)

V=1 i=1

where d = (dl,d 2 ,... .dn) is any vector satisfying Xd' = 0,

and we set ui in (ii) as
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ui =0I K(t.,s)z(s)ds (4.16)
0

then the solution o in (ii) satisfies

-z (4.17)

Proof: Assertion (i) is Lemma 2.7 and (ii) is Lemma

2.1. The remarkable error bound of (iii) is obtained from

Lemmas 2.5 and 2.6 upon setting 6 as the representer of
0

the continuous linear functional N defined by Nz = zs),

zC U, that is, 8o " In this case we have

1zo(s)-z(s)l - l z-zR'l >

<RS'9 v (s) (4.18)

<Rs5 i = -is

Aiiv) is another way of writing Lemma 2.3.

Other minimization problems may be handled within the

context of the geometry of reproducing kernel Hilbert space.

For example, the solution to the problem: Find ze A to

minimize M(z) of (4.8) subject to the linear inequalities

a< z(sat < b£ , it. -l,2,..k , sicS (4.19)
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may be reduced to a standard problem of minhnizing a (finite)

quadratic form subject to liz ear inequalities, as follows.:

Inequalities (4.19) may be written

a. < zRsz> < bV?, ( , (4.20)

Then, any solution z to this minimization problem must

be of the form

m n k
Z c + I d + I e R (4.21)VI ii I s

for some coefficients {cv}, {d.} and {e£}. By substituting

.- 44.21) into (4.20) and (4.8), the minimization problem re-

duces to the standard problem of minimizing a quadratic form

.in the coefficients, subject to a set of linear inequalities.

This minimization problem may be recognized as a problem in

I control theory. See, for example (5).

Side conditions which are Just sufficient to specify

POz give especially simple looking answers and error bounds.

For example:

Theorem 4.2. Under the assumptions of Theorem 4.1:

(i) The solution to the problem: find ze A to

minimize (4.8) subject to the boundary conditions 6

e0: M = <,V'z> = % v, = 1,2...m (4.22)

#990 -35-
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is unique and is given by z.,

'M -t, + Er. (_-Xle,) (4.23)

where O .2 e
2" A

iU) lim z - zo, where

+ (;-X+ (4.24)

is the solution to the problem: Find ze l to minimize

2f 2m~ds (4.25)
f (LmZ)~d

0

subject to

f f K(ti's)z(s)ds, i = 1,2,...n t4.26)

M ' v 1,2,...m. V4.22)

(iii) If zCA satisfies

u f r K(ti,s)z(s)dS (4.27a)

0

and

M1z e v, 1v 2...m (4.27b)
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then z of (4.24) satisfies

Az -z() 2  2 2H
Iz(sl-zo 2 (s<Y )(LmZ) udu) (4.28a)" 0

where S'1
a 2(s) - R1 (s,s) - •(s)-l•()I (4.28b)

and v(s) is given by (4.14b). i
Proof: ze A, MVz - v V = 1,2,...m imply that J

P Vz I v=1 I
and

1 mf K(tis)z(s)ds = <niz> = <Ei,Plz> + x KXi A
0 11V=1 V V

(4.29)

In this case (4.8) may be written

m m.M(z) = [ (<if,P Z>-u ' 0 8 ,.ux*))i,j V=1 V=Il

+ cgIIPzlII (4.30) -

Since {inl and P z are in i' we may find (P z) to

minimize (4.30) or (Plz) to minimize (4.25) subject to

9#990 -.37-.
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via Lemmas 2.7 and 2.1 respectively, by setting m 0,

in these lemmas. To prove (iii) let P be the

projection operator onto the subspace spanned by {Ci} .

If ze A satisfies (4.27a) and (4.27b), then

P z P Z (4.31a)

Poz -Poz0 (4.31b)

and hence

e zO= (P -P )z. (4.32)

But

z(s)-zo (s) - <z-zoR>

._ <(P I-P t) Z,Rs>

=<(PI-P,)z,(PI-Pr)R (4.33)

Hence

Jz(,)-Zo0 wlý_ 11(pi-P Oz1111pi-P )R,11 •_ JPI, JII(Pl-P E jRS1

(4.34)
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But
21PP ) 4.351) -

sI

A direct comparison with the solution of the methods

of regularization and statistical estimation obtains, as

follows:

Set V - D in (4.8) where D is the diagonal matrix of

(1.7), and set e = 0 in (4.23). Choose Is ik=, si,[0,l,
iI

as in Section 1 and let

u = (UlU 2 ,... un)'

be a given vector of real numbers and

z - (z z2F2,...Zk)I

where

z Za (S i), zI Er a Ui

Then

z= E Q+cD 1)-1- (4.36)

where E is the k x n matrix with i, jth entry

1
(si =f K(tju)R 1(Si,u)du (4.37)
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and • is the n x n matrix with i, jth entry

I1

<, I I r K(tliu)R (uu')K(t j ,u')dudu' (4.38)0 0

if ko are a set of suitably chosen quadrature co-

efficients, then we have, for purposes of comparison,

appxoximately

k

(sl [ K (tjfu I )R (situ It )a £ X(4.39)

k k
<ti,&j> as[ K(tiu I)R I (Ut, Ut,K(tjU ,)°t°£

L-i V'-1

(4.40)

th4Let R be the n x k matrix (of (1.7)), with i, jth entry

K(t 4 ,si) )i, and A be the k x k matrix with jj entry

R (Sj~sj). Then we may write (4.36) as

-- e(KX'+fD'Il-I (4.41)

We may identify R with Q of section I as follows:

Suppose fE 411 then if Lmf = g, we have

1
f(s) = f G(s,u)g(u)du (4.42)

0
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and
1 1

I (Lf) 2ds = I g 2 (s)d (4.43)
0 0

Let f = (f(s1 ), f(s 2 ),...f(sk))', g = (g(sI), g(s 2 ) ... g(sk))$

Gbe the k x k matrix with ijth entry G(s s i )a and D. be

the k x k diagonal matrix with i• ith entry cr

Since

1
R(s,s') f G(s,u)G(s',u)du, (4.44)

0

we have

R= GD-IG' (4.45)

also

g .(4.46)

1 2 1 _2,D -l
f'Qf f (L mf) ds = g2(s)ds g'D1g G D G f = f'R,-f

0 0

(4C47)

Some questions of convergence may be answered as follows:

For simplicity, we consider that the boundary values 8 of

the solution z to (1.1) are known. We may then consider,

without loss of generality that z and z are in A
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Let the family of functions t t i, 0 < t < 1 be

defined by

1
ts) I K(t,u)R1 (s,u)du 0 < t < 1 (4.48)

0

If the family of functions •t' 0<_t<ll span the

(separable) space J 1 , then a 2(s) of (4.28), will tend to

0 for each s as the set {t 1  becomes dense in [0,1]. by

(4.35). A necessary and sufficient condition that

{ct' 0<t<l} span Al. is that

<&t-z> - 0 0 < t < 1, zc All (4.49)

implies that z - 0. But (4.49) may ba rewritten

1
f K(t,s)z(s)ds 0, 0 < t < 1, ze A (4.50)
0

imples z = 0. There does not seem to be a straightforward

general way of establishing a rate at which

C2 (s) S II ( -P P)R, 12 (4.35)

tends to zero, as, say supIt i+l-til - 0, if indeed such a

rate exists. However, results have been obtained regarding

the convergence of II(P1-PC)81I when Se I is "very smooth".
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Thus error rates for the pointwise approximation of very

smooth z, or for the approximation of continuous linear

functionals with very smooth representers, are availab-e. it
These results will appear separately.

5. The Introduction of Quadrature Formulpe and the Choice of a

If the integral

( S K(ti,u)Rl(s,u)du (4.4)
0

can be evaluated analytically at values of s for which it

is desired to estimate z(s), and X i and oij of (4.5) and

(4.6) are known exactly, and computational and experimental

errors are neqligible, then it is natural to estimate

z(s) by z (s) of Theorem 4.1 or Theorem 4.2. The purpose0

of this section is to study the situation where {X i1, {aij}
and {i(s) 1%=1 must be evaluated by quadratures. where

quadrature error is the primary source of error. Let
• N N

•- sc[0.,11, and {w "} be suitably chosen quadrature points

and quadrature coefficients, respectively. We show that this

situation leads in a natural way to estimating z by the solution to the

problem: Find z •i to minimize

n N 2 1 2
M(z) = i( 1IK (ti sk) Wkz(sk)) + X f (LmZ) 9ds

i=1 k=1 0

(5.1)
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where X is chosen to ap2roximate the mean square quadrature

error. Define ni c A by

N
ni= M K(tiSk)Wk R i 1,2,...n (5.2)k-i k s

Letting RlSk be that element of N1 whose value at s is

given by Rl, Sk (s) = Rl(S,Sk), k = 1,2,...N, define Ei e g,

by

k]. K(tivsk)WkRl , i = 1,2,...n (5.3)

A A

Then Pni = i' i - 1,2,...n. X~i given by

^ N
X~ji =<i•>= K(t!,sk )W k$(s k) (5.4)

k=l

is a quadrature approximation to XPi, CTj given by

A ^ ^ N N
Vij <Ci'ýj> I I K(ti sk)WkRi (Sk's)K(tj'Wi

kul Z=1

S~(5.5)

is a quadrature approximation to a and ti(s) given by

N
(s)= K(tis)W R (s,(5.6)

k=l k

is a quadrature approximation to •i (s) of (4.4), for each s.
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Define c. EJ$ by

1C

£i= '-n. (5.7) 11

The problem may now be viewed as that of approximating
Az(s) = <R ,z> from the information ui = f.i+ci,z>, i = 1,2,...n,

or, alternatively approximating Rs by {rli+,ii, where the

{C 1ý are unknown.il

Let

y d + di

i=l 1q+i t

where d (dl,d 2 ,...dn) are to be found so that y is a good
approximation to Rs If we try to choosed to minimize

Rs-Yl in the error hound I-

<<-,Rs-y>l I z1 I HRs-y1I (5.8)

it is necessary to know <R ,s,> = c.(s), i = 1,2,...n,

whi.2h is assumed unknown.

We will choose d s;ubject to the constraint

n ^

•od(Rs-[d )Ii 2 1 0
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Ii

Then

1IRs-8YI 2 !2{(IPI(Rs- d±)112 + IIi C 1il2)

(5.9)

Let V be the matrix with i,jth entry vij -<ci,E> given

by

1 1 N
<Ci,jE > f K(tiu)dutf K(tjov)R(u,v)dv - I K(tjisk)R(Usk)wk}

0 0 k=!

N 1 N
- ) K(tis ){fK(tj,v)R(sD,v)dv- I K(tjSk)R(s£,sk)Wk}

i- 0 k=l

(5.10)

and let X and [ be the n x m and rt x n matrices with entries

{Xi} and {Oaj} respectively, qiven by (5.4) and (5.5).

By Lemma 2.8 with 6 = Rs, the solution Rs to the

problem: Find y of the form

n -

y = [ dilni+Ei) (5.11)

to minimize

r, 12 1 1 .... d 1 12
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sub-ect to

n ^

is given by

Rs O(s)(Xs-Xl,)-xs 1 1÷+C)

+,(s (S( -l-s-i(XS -lX')-lS- 1 i(n÷) (5.14a)

where

;(s) = ( S), (S) .. . (s))

(5.14b)

U(s) ( S),2(S),....n(s))

S = •+ V
and

^~ ^q+l~l 2+E 2 -- •n+En)

Any "optimal" approximation to R will depend on th un-

-- --- ~ - - --

known V. Thus it is desirable here to approximate V using

whatever information is available. A plausible approximation

is

V X( (5.15)

where X is a "guestimate" of the mean diagonal element of V,
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S~ I n

- n •i • > (5.16)
n i~Li i

this "guestimate" being based on (5.10) with i - j and the

properties of the quadrature formula being used.

Let Rs,£JE be given by (5.14) with V replaced by Al,

that is,

Rs,= *(S)(Xs) X'I-XS (rI+e) {

+ (S) s.7s X(xs.x)S) (T1+c) (5.17)

where

S = + ,l.

Then an estimate zA for z(s) is defined by

ZA(s) <z,R,, > (5.18)

with

Iz(S)-Z A (a) I ý I IZ {j I I R s-RsA{

The function zA defined by (5.18) is in A and may be written

zA *(XSlix')X5 1  (5.19)
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where * and • are vectors of elements of A with $ as in
1(4.9 an(d2

with &i given by (5.3). By Lemma 2.7, zA is the solution

to the problem: Find ze U to minimize

n 1 2
(ui-<ri.,z>)2 + x f (LmZ) 2ds (5.20)

i= 10 s

where

A N
<•i~z= • K(t,sk)wkZ(S i 1,2,...nk=l I

and X is of the order of magnitude of the mean square quadrature error.

Thus, if the primary source of error in forming a com-

putational estimate of z(s) is quadrature error, then this

shows that an appropriate choice for the regularizing para-

meter a of (1.6) is as A, an estimate of the mean square

quadrature error, as defined by (5.10) and (5.16).

We have not mentioned the choice of quadrature formula.

Once the quadrature points N= are chosen, the choice of

best formula in the sense of Sard is equivalent to approxi-

mating the element ni 9 by a linear estimation of the

Nelements {R 1k=* The optimum coefficients in this case

#990 -49-
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are readily seen to depend on the unknown integrals. He.ice

a convenient quadrature formula which allows a "guestimate"

of X should be used.

As is widely known, as soon as there are experimental

or computational errors, there is a point of diminishing re-

turns in choosing n too large. If, e.g. K(t,s) is continuous

then II•-L and IT l 1 + as n becomes large, where fl'II

is the spectral norm. We will quantify this statement and

indicate a mitigating technique. To simplify the equations,

we let M z = 0, v = 1,2,...m. Then we may let

1
Ui = < Cie+iz> = f K(tis)z(s)ds, i - 1,2,...n (5.21)

0
A 

A

where are given by (5.3) and i e i- i. Then, by

Theorem 4.2 the solution to the problem: Find zeU4 toq

minimize

n 2 i mz2
( 1i-<iz>) + Z)ds (5.22)

is given by zX,

Z =~X-I u (5. 2 31
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and I

Iz(s)-z(s)I12 I<z-z_,Rls>.

I<z,R,,s-Rl,sA>1 - l lzill IRis-Ri,sxll (5.24)

where

Rd
Rl,s,X =•d g+i i

with d = (dl,d 2 ,...dn) given by

d : F(S) (Q+XI)-

with t(s) given by (5.14b).

Now

2 n i1+ 2

IIRi,s-Ris 2 < 2R1HR1 6 - _di 2+dIdicil

(5.25)

If V is the matrix with i, th entry vij,= <Eiej>, then the

term in brackets in (5.25) may be expanded as
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+ (s) ( V(+Xl) (s) (5.26)

and some algebraic meftipulation gives that (5.26) is equal to

R ~(s,s) - 9(s)x &~(s)' + &(S)y Al &(s)' (5.27)

where •-i/2 is the symmetric square root of and

A =(J+XI) 1I (~ 1 V +XI (i+xi)1 (5.28)

Letting P^ denote the projection operator onto the subspace

spanned by i , we have

I IP^Rlsl 12 ((s)i-l'(s) (5.29)I's

Lines (5.25), (5.27), (5.28) and (5.29) yield the bound ,

IIRl's- Hl,SXI2_< 2 I IR -P,sPZRI.,2s +

+ iJlJP iR 1 2  II1 +xI)-,I -l Iv + xi (5.30)

If V = XI, the term in curly brackets in (5.30) can be replaced

by X•I(J+XTI)-lI. In practice as N, the number of quadrature
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I

points becomes large, one expects I IvI to decrease to a

f.inite limit imposed by round off errors. As n(n"<N), the ii

number of data points, becomes large, I'!Rl 5-P^R 1 1s de-

creases, however, Xj (j+XI)-lj 12 will increase for X bounded

below since cc()- j * as n - c.

Let H 1 {h i} be a p x n matrix of real numbers of

rank p. Let

n
ill= h hii
i=l1

^ n
EX hiei (5.31)

i=1 ii

n n 1
uR = i i = I h9i f K(ti,s)z(s)ds, 2. 1,2,...p.

i=l i=l 0

If we estimate z(s) assuming the information zc)41'

<Z,c +C >= up", Z = 1,2, .. p

as before, only replacing the set { = by and

the numbers {ui} by fu }P, an error bound analogous to

the right hand side of (5.30) is obtained of the form

2 IA 22( j '- P R 1,5s + JJIý ,. (jj(HY '+Xz I I'11-HVH'+XII I))

(5.32)
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where Po is the projection operator onto the subspace

spanned by {)' If the rows of H are orthonormal vectors

in Euclidean n-space, then the term in curly brackets in (5.32)

can only be decreased, as compared to the term in brackets in

(5.20), while the first term in (5.32) may, for large n,

and n-P, may not increase much, as compared to the first

term in (5.30). If V - AI, then the "optimum" choice of

H to minimize the term in brackets in (5.32) is to choose

the rows of H as the elgenvectors corresponding to the p

largest eigenvalues of L.

6. 'Statistical Estimation' of Solutions to Integral Equations

It is far from coincidental that the method of re-

gularization and the method of statistical estimation lead

to the same numerical solution. Let R(s,s') be a continuous

positive definite kernel on S x S, and A R the reproducing

Kernel Hilbert space associated with R. Let Z (s), seS be a

stochastic process (i.e. a family of random variables in-

dexed by s), with EZ(s) = 0 2i and

EZ(s)Z(s') = R(s,s') (6.1)

2J without real loss of generality
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Let K(t,s) satisfy the assumptions of the corollary to

Theorem 1.1 and consider the stochastic model

U(t) = f K(t,s)Z(s)ds (6.2)
S

where observations will be taken on the random variables

U(ti i = 1,2,...n. U(t) is a well defined random variable

for every tcT. We have been studying the (deterministic)

model

u(t) = f K(t,s)z(s)ds (6.3)
S

where zE URP and the numbers u(ti), i = 1,2,...n are available.

The purpose of this section is to demonstrate rigorously that

the same numerical solution to the integral equation is ob-

tained wether the true 'solution' is considered to be an

element zc R or a realization of a stochastic process Z(s)

with covariance R(s,s').

Let .Z be the Hilbert space spanned by the stochastic

process [Z(s),scS}. (See [61). AZ is defined as follows:

All random variables Y which are finite linear combinations

of the form

Y = [ atZ(s£,) sI€S (6.4)

are in A V An inner product on the linear manifold of all
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such finite linear combinatiOn5 i4s

<YV <y 2 > =EY 1Y 2' (6.5)

and AZ is the closure of this linear mrinifold with the

given inner product.. The precise source of the duality be-

tween 'determninistic' and statistical models is the following

(well known) fact:

Sis isometrically isomorphic to .R under the

isomorphism induced by the conespondence "-",

Z(s ) (6.6;

Furthermore, the random variable Ye A corresponds to the

element ne A R if and only if

EYZ(s) = <n R'> = n(s), seS A6.7'

The family of random variables 0(t), tcT are all in •, by

our assumptions on K(ts) and

Utt) W (6.8)

where nt is defined, for each t, by (1.25). Let

be a specified set of m orthonormal elements in '4R' and let
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{ be the rn random vatiables in .4 which correspond to

{ 1 under the isomorphism induced by (6.6). It can then

be shown that Z(s), scS has a representation of the form

Z(s) (s) + Z1 (S) (6.9)

where Z (s) is a zero mean stochastic process with

EZ 1 (S)Z 1 (s') = RI(s,s') = R(s,s') - V ((s)O (s') (6.10)
V=i

and Ep P = 6 PV, p,v = 1,2 ... m. Let Z(s) be, for each s,

that random variahle in the subspace of 4 Z spanned by

{fU(t) }n= which minimizes

E(Z(s) - Z(s))2 (6.11)

subject to

E(Z(s) - Z(s)I 1 ,v v 1,2_..n) = 0. (6.12)

It follows from Lemma 2.2 and (6.6) with the identifica-

tions Z(s) - 6,FU(ti) ~ ni' P - v' and K(ti,s)Zl(s)ds - &i

that
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Z%) - S (s) (Xj X') X -I

+ U(s) (11 - 1-,X(Xl-lx , )-XF-1 )U, (6.13)

where

(S) = ( S 0 2 (s),... ým(s))

k(s) R I(s•l( , E2(s),.. •n S))

X arid • are as in (2.1), and U is the vector of random

variables given by

U = (U(t 1 ), U(t 2 ),...U(tn))

Thus, the numerical value Z(s) based on the model (6.2)

and a "realization" U(ti) uP, i - 1,2,...n, is exactly the
A

same as the numerical value of zo(s) of (4.11). based on

the model (6.3). An identical statement may be made about

Z (s) of (5.19) if we replace (6.2) by the stochastic model

N
U(ti) - I K(ti sk)WkZ(sk) + E (ti) i = ,2,...n(6.14)

k=l
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where

E (ti 0 1
E (t.)c (t.) 0, i + j

-- ,I i = j

E (ti)Z (sk) = 0, i = 1,2,...n

k = 1,2 .... N

If we let 9 R be the Hilbert space of all continuous

linear functionals on s R' then 4 R is consequently

isometrically isomorphic to 34 under the correspondancez

Z7ks) - NS

where N is the continuous linear functional defined by

SS

Ns zR

Then

U(ti) ~ At.
1

where At. is the continuous linear functional defined by
1
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Az -f K(ti,s)z(s)ds, zc Rti S

It is seen that the geometry for approximating Z(s) by

{U(ti) !is exactly the same as the geometry for

approximating N by {A in
Sl

An experimenter approaching the problem with the model

(6.2) chooses the prior covariance R(s,s') of (6.1) according

to his belief or past experience concerning Z(s). The

numerical analyst, beginning with (6.3) should choose an R

such that the norm of the solution z in AR is known or
R

believed to be small.

It is clear that algorithms for the numerical solution

of a broad variety of (linear) equations can, in fact, be

identified with prediction problems on stochastic processes

in this manner.
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